Monatshefte für Chemie 103, 716-735 (1972) © by Springer-Verlag 1972

Über die intermetallischen Verbindungen der Seltenen Erdmetalle mit Ag, Au, Pd und Pt*

 Von

S. Steeb, E. Gebhardt und H. Reule Aus dem Max-Planck-Institut für Metallforschung in Stuttgart, Institut für Sondermetalle

Mit 6 Abbildungen

(Eingegangen am 22. April 1971)

The Intermetal Compounds of the Rare Earth Metals with Ag, Au, Pd, and Pt

In a survey of structural data and solution characteristics in the binary systems of Ag, Au, Pd, and Pt with the rare earth metals it is apparent that although relatively many intermetal compounds of Ag, Au, Pd, and Pt with the rare earth metals have been studied, the phase diagrams and solubility relationships are less well known. For intermetal compounds of analogous molecular formula the structural types and lattice constants are drawn up in tabular form. At least three isostructural series are recognizable, namely Ag(RE), Pd₃(RE), and $Pd_2(RE)_5$ (RE = rare earth), whereas in the other series, such as $Ag_2(RE)$, $Ag_3(RE)$, and $Pt_3(RE)$, an alternation of structure type occurs. Only three isostructural series of the rare earth metals had been described to date, namely N(RE), $B_6(RE)$, and $Al_2(RE)^{74}$. The structural data listed show that although the formation of the individual phases can be interpreted plausibly on the basis of the usual rules, reliable prediction is not yet possible, apart from a few exceptional cases.

In plots of the mean atomic volume of the compound series treated against the atomic number of the rare earth metals an essentially smooth curve is obtained. Deviations are observed only in the case of compounds of Eu and Yb, which can be ascribed to the large atomic volumes of these two rare earth metals. Furthermore, it is highly probable that stronger bonding forces exist in the phases Au(RE) than in the phases Ag(RE), based on the position of the corresponding curves.

In einem Überblick über die strukturellen Daten und über das Lösungsverhalten in den binären Systemen des Ag, Au, Pd und Pt mit den Seltenen Erdmetallen fällt auf, daß zwar relativ viele intermetallische Verbindungen der Edelmetalle Ag, Au, Pd und Pt mit den *SE*-Metallen untersucht sind, daß aber

^{*} Herrn Prof. Dr. H. Nowotny gewidmet.

die Zustandsschaubilder und Löslichkeitsverhältnisse weniger gut bekannt sind.

Für die intermetallischen Verbindungen analoger Bruttoformel sind die Strukturtypen und Gitterkonstanten tabellarisch zusammengestellt. Dabei erkennt man wenigstens drei isostrukturelle Reihen, nämlich Ag(SE), $Pd_3(SE)$ und $Pd_2(SE)_5$, während in den übrigen Reihen, wie z. B. $Ag_2(SE)$, $Ag_3(SE)$ und $Pt_3(SE)$, ein Wechsel der Strukturtypen auftritt. Bisher waren nur drei isostrukturelle Reihen der Seltenen Erdmetalle $[N(SE), B_6(SE)$ und $Al_2(SE)]$ genannt worden⁷⁴.

Die aufgeführten Strukturdaten zeigen, daß zwar die Entstehung der einzelnen Phasen durch die üblichen Regeln plausibel gemacht werden kann, daß aber — von wenigen Ausnahmen abgesehen — eine relativ sichere Vorhersage praktisch noch nicht möglich ist.

In graphischen Darstellungen des mittleren Atomvolumens der gen. Verbindungsreihen über der Ordnungszahl der SE-Metalle ergibt sich im wesentlichen ein stetiger Kurvenverlauf; Abweichungen sind nur bei den Verbindungen von Eu und Yb zu beobachten, was auf die großen Atomvolumina dieser beiden SE-Metalle zurückgeführt werden kann. Außerdem ist aus der Lage der entsprechenden Kurven mit großer Wahrscheinlichkeit zu schließen, daß in den Phasen Au(SE) stärkere Bindungskräfte wirksam sind als in den Phasen Ag(SE).

Die Seltenen Erdmetalle spielen in der Technik bisher nur eine untergeordnete Rolle; erwähnenswert ist lediglich die Verwendung von Cer in den schon seit langem bekannten Zündlegierungen. Darüber hinaus zeigen sich einige Ansätze für eine praktische Anwendung, so z. B. zur Verbesserung der Leiterwerkstoffe auf Silberbasis¹, als Neutronenabsorber in der Kerntechnik, zur Stabilisierung einiger keramischer Stoffe, als Oxidbildner bei der inneren Oxidation (Dispersionshärtung) edlerer Metalle und zur Herstellung magnetischer Legierungen²⁻⁶.

In wissenschaftlicher Hinsicht stellen die Seltenen Erdmetalle eine Vielzahl von interessanten Problemen. Nachfolgend wird eine systematische Übersicht über die bisher vorliegenden Ergebnisse von Strukturuntersuchungen in den binären Systemen der Seltenen Erdmetalle mit den wichtigsten Edelmetallen gegeben. Im Vordergrund stehen die Strukturtypen, die Gitterkonstanten und die Atomvolumina der intermetallischen Verbindungen in den Reihen Ag—SE, Au—SE, Pd—SEund Pt—SE, wobei SE eines der Seltenen Erdmetalle, einschließlich der Elemente Sc und Y, bedeuten soll. In die Betrachtungen mit einbezogen ist außerdem noch Hf, während das instabile Element Pm außer acht gelassen ist.

Zusammenstellung und Diskussion der strukturellen Daten

Zunächst fassen wir in den Tab. 1 bis 4 für die untersuchten Verbindungen die Strukturtypen und die Gitterkonstantenwerte zusammen

SE	Ag(SE)	$Ag_2(SE)$	$Ag_3(SE)$	$Ag_{51}(SE)_{14}$
Sc	CsCl ⁸ 3.41	MoSi ₂ ⁹ 3.52 8.99	9 	<u>.</u>
Y	CsCl ¹⁰ , ¹¹ 3,62	$\begin{array}{c} MoSi_{2}{}^{12-14} \\ 3,68 9,18 \end{array}$	Ag ₃ Pu ¹² 12,53 9,19	$egin{array}{llllllllllllllllllllllllllllllllllll$
La	CsCl ^{15–17} 3,78	$\begin{array}{c} {\rm CeCu_2}^{16-18} \\ {\rm 4,83} {\rm 7,29} {\rm 8,20} \end{array}$	Ag ₃ Pu ¹² 12,85 9,49	Ag ₅₁ Gd ₁₄ ⁸⁰ 12,96 9,53
Ce	CsCl 15, 19 3,75	CeCu ₂ ^{18, 19} 4,80 7,09 8,21	Ag ₃ Pu ¹² 12,75 9,40	$\substack{\mathrm{Ag_{51}Gd_{14}^{80}}\\12,88 9,46}$
\mathbf{Pr}	CsCl ¹⁶ , ²⁰ 3,74	CeCu ₂ ^{16, 18} 4,78 7,08 8,20	Ag ₃ Pu ²¹ 12,72 9,40	$egin{array}{llllllllllllllllllllllllllllllllllll$
Nd	CsCl 22 3,71	${ m CeCu_2}^{18} { m 4,77} { m 7,03} { m 8,15}$	Ag ₃ Pu ²¹ 12,73 9,39	$egin{array}{llllllllllllllllllllllllllllllllllll$
\mathbf{Sm}	CsCl ^{23, 24} 3,67		Ag ₃ Pu ¹² 12,62 9,28	$egin{array}{llllllllllllllllllllllllllllllllllll$
			$rac{\Delta a}{\Delta T} = 1.5 \cdot 10^{-4} \mathrm{\AA}/2$	°C
			$rac{\Delta c}{\Delta T} = 1.7 \cdot 10^{-4} \mathrm{\AA}/2$	°C
Eu		${ m CeCu_2^{25}} \ 4,79 \ 7,53 \ 8,22$	kompl. ²⁶	
Gd	CsCl ^{20, 24} 3,65	MoSi ₂ ^{12, 13, 27–29} 3,73 9,30	$\begin{array}{c} {\rm Ag_{3}Pu^{12}} \\ {\rm 12,61} {\rm 9,23} \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
\mathbf{Tb}	CsCl ^{13, 24} 3,63	MoSi ₂ ¹³ , ¹⁸ , ²⁸ , ²⁹ 3,71 9,25	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{llllllllllllllllllllllllllllllllllll$
Dy	CsCl ²⁷ 3,61	$\substack{\mathrm{MoSi_{2}^{12, 13, 27-29}}\\ 3,70 9,21}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\substack{ {\rm Ag_{51}Gd_{14}}^{80} \\ 12,64 9,27 }$
Но	CsCl ²⁴ 3,59	MoSi2 ¹² , 13, 28, 29, 31, 32 3,68 9,18	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\substack{\mathrm{Ag_{51}Gd_{14}}^{80}\\12,61 9,26}$
Er	CsCl ²⁴ 3,58	MoSi2 ¹² , 13, 28, 29, 31, 32 3,67 9,16	Ag ₃ Pu ¹² 12,46 9,16	$egin{array}{llllllllllllllllllllllllllllllllllll$
\mathbf{Tm}	CsCl ^{13, 24} 3,56	MoSi2 ^{13, 18, 28, 29} 3,65 9,14	$\begin{array}{rrrr} Ag_{3}Pu {}^{30} \\ 12,55 & 9,20 \\ AuCu_{3} {}^{80} \\ 4,21 \\ TiCu_{3} {}^{80} \\ 6,08 & 4,95 & 5,16 \end{array}$	
Yb	$\begin{array}{c} {\rm CsCl}^{11, 33}\\ {\bf 3,68}\\ {\bf FeB}^{33}\\ {\bf 7,59} {\bf 4,67}\\ {\bf 6,01} \end{array}$	${f MoSi_2}^{11} 3,62 8,88 \ {f CeCu_2}^{18,\ 33} 4,66 7,21 8,18$	hex. prim. ⁹ 13,59 21,51	

Tabelle 1. Strukturtyp und Gitterkonstanten (in Å; Reihenfolge: a und c bzw. a, b und c) der Verbindungen vom Typ Ag(SE), Ag₂(SE) und weiterer Verbindungen der Form Ag_x(SE)_y

\overline{SE}	Ag(SE)	$Ag_2(SE)$	$Ag_3(SE)$	$\mathrm{Ag}_{51}(SE)_{14}$
Lu	CsCl ³⁴ 3,54	MoSi2 ^{13, 18, 28, 29} 3,63 9,11		
$\mathbf{H}\mathbf{f}$	γ-TiCu ^{35, 36} 3,41 6,48			
		Weitere $\operatorname{Ag}_{x}(SE)_{y}$ -V	⁷ erbindungen	
	$\mathrm{Ag_7Yb_2}$	${ m Ca_2Ag_7}^{ m 33, \ 80} \ 5,49 \ 14,06$	Ag_4Sc	MoNi4 ^{9,80} 6,58 4,07
	$Ag_{7}Ho_{2}$	kompl. ³⁷	Ag_5Eu	CaZn ⁵ ^{25, 80} 5,60 4,64
	Ag_3Yb_5	B ₃ Cr ₅ ³³ 7,94 14,88	$\mathrm{Ag}_{2}\mathrm{Yb}_{3}$	$egin{array}{c} { m Si}_2 { m U}_3{}^{33} \\ { m 8,} 22 & { m 4,} 22 \end{array}$
	Ag5La (500 °C)	$^{ m substit.}_{ m 5,57}~9,08$	Ag5La (780 °C)	kompl. ⁸⁰
	Ag_4Lu	${ m MoNi_4}^{80} \ 6,67 \ 4,16$		

Über die intermetallischen Verbindungen der Seltenen Erdmetalle 719

Fortsetzung (Tabelle 1)

(soweit sie bis jetzt bekannt geworden sind), und zwar die Ag—SE-Verbindungen in Tab. 1, die Au—SE-Verbindungen in Tab. 2, die Pd—SE-Reihen in Tab. 3 und die Pt—SE-Verbindungen in Tab. 4. Für die Pd-Verbindungen vom Typ $Pd_2(SE)_3$, Pd(SE), $Pd_4(SE)$, $Pd_3(SE)_2$ und $Pd_2(SE)$ wurde zwar die Existenz mitgeteilt, die strukturelle Beweisführung steht aber bisher noch aus. Auch bei den reinen SE-Metallen Gd, Dy, Ho und Er fehlen die entsprechenden Untersuchungen.

Ein Vergleich der Tab. 1 bis 4 zeigt, daß die Verbindungen der SE-Metalle mit Au am intensivsten untersucht worden sind; danach folgen die Verbindungen mit Ag, dann diejenigen mit Pt und schließlich solche mit Pd.

a) Ag-SE-Verbindungen (Tab. 1)

Alle Ag—SE-Verbindungen sind (mit Ausnahme von AgEu) untersucht und kristallisieren im CsCl-Typ. Lediglich bei AgYb wurde zusätzlich noch als Tieftemperaturmodifikation der Strukturtyp FeB (orthorhombisch) festgestellt. Außerdem bildet das im γ -TiCu-Typ kristallisierende AgHf eine Ausnahme. In einer früheren Arbeit²⁴ wurden die Gitterparameter der Phasen Ag(SE) und Au(SE) über dem Radius des dreiwertigen (SE)-Ions aufgetragen. Dabei ergaben sich parallele Geraden. Da diejenige für Au(SE) bei kleineren Gitterkonstanten liegt, kann geschlossen werden, daß die Bindung in den Au(SE)-Verbindungen stärker ist als in den Ag(SE)-Verbindungen (Abb. 1).

vom T	yp Au(<i>SL</i>), Au ₂ (<i>S</i> .	E), Au ₃ (SE), Au ₃ , ₅ (SE), Au	4(SE) und weiterer V	erbindungen c	ter Form $\operatorname{Au}_{x(SE)y}$
SE	$\operatorname{Au}(SE)$	${ m Au}_2(SE)$	${ m Au}_3(SE)$	${ m Au}_{3,5}(SE)$	$\operatorname{Au}_4(SE)$
Sc	CsCl ⁸ 3,37	MoSi2 ^{9, 13} 3,52 8,99	6 	æ 	$MoNi_4^9$ 6,57 4,07
Y	CsCl ²⁴ 3,56	$M_{0}Si_{2}^{13}$, ³⁸ 3,70 9,20	Cu_3Ti^{38} 6,10 5,08 4,97	kompl. ³⁸	
L_{a}	CsCl 16 3,74	CeCu ₂ ^{16, 18} 4,70 7,30 8,16	${ m Ag_3Pu^{21}}$ 12,83 9,25		
Ce	kompl. ¹⁹	CeCu ₂ ^{18, 19} 4,53 7,20 8,07	$Ag_{3}Pu^{21}$ 12,74 9,27		
\mathbf{P}^{r}	CsCl 16, 24 3,68	kompl. ¹⁶	${ m Ag_3Pu}^{21}$ 12,67 9,23		
Nd	CsCl ²⁴ 3,66		$Ag_{3}Pu^{21}$ 12,66 9,21	kompl. ³⁸	
Sm	$CsCl^{24}$ 3,62			kompl. ³⁸	
Eu		$CeCu_2^{18}$ 4,67 7,33 8,14	tetr. prim. ³⁰ 11,5 8,43		
Gd	CsCl ²⁴ 3,59 CrB ³⁹ 4.53 10.91 4.6	MoSi ₂ ^{11, 13, 27, 28, 38 3,73 9,02}	Cu ₃ Ti ³⁸ 6,19 5,09 5,00	kompl. ³⁸	
Tb	CsCl ²⁴ 3,58	MoSi2 ^{13, 18, 28, 29, 38} 3,71 8,99	$Ag_{3}Pu^{30}$ 12,5 9,18	kompl. ³⁸	

720

$\mathbf{D}\mathbf{y}$	CsCl ²⁴ 3,56	Mo 3,6	Si ₂ 11, 13, 27, 28, 29, 38 9 8,97	$Cu_{3}Ti^{38}$ 6,09, 5,09	4,98	kompl. ³⁸	
H_{O}	CsCl 24 3,54	Mo 3,6	Si ₂ ^{13,} 28, 29, 32, 38 8 8,94	Cu_3Ti^{38} 6,06 5,07	4,96	kompl. ³⁸	
Er	CsCl ²⁴ 3,53	Mo 3,6	Si ₂ ^{28, 32} , 38 6 8,98	$Cu_{3}Ti^{38}$ 6,03 5,08	4,95		MoNi4 ³⁸ 6,64 4,15
Tm	CsCl ^{24, 40} 3,52	Mo 3,6	Si ₂ ^{18, 28, 38 5 8,90}	Cu ₃ Ti ^{30, 38} 6,0 5,1 4,	93		kompl. ³⁸
$\mathbf{Y}_{\mathbf{b}}$	CsCl 11, 41 3,56 FeB 41 7,43 4,59 5,8	Mo 3,6	Si ₂ 11, 18, 28, 38, 41 3 8,89	Cu ₃ Ti ^{38, 41} 5,98 5,07	4,92		MoNi41, 38 6,62 4,12
Lu	CsCl 42 3,50	Mo 3,6	Si ₂ ^{18, 28, 38 2 8,88}	kompl. ³⁸			kompl. ³⁸
Нf	Y-TiCu ^{43, 44} 3,467 6,32	Mo 3,5	Bi ₂ ^{88, 43} 3 8,65	Cu ₃ Ti ^{38, 43, 4} 6,00 4,88	ы 4,79		ZrAu ₄ ^{48, 45} 14,24 4,99 4,83 MoNi ₄ ³⁸ 6,53 4,03
			Weitere $\operatorname{Au}_x(SL)$	")y-Verbindun	lgen		
$AuSe_2$	kompl. ⁸	$AuLa_2$	kompl. ¹⁶	$AuCe_2$	kompl ¹⁶	$AuPr_2$	kompl. ¹⁶
$AuGd_2$	kompl. ¹⁶	AuDy_2	kompl. ¹⁶	$AuYb_2$	PbCl ₂ ⁴¹ 7,81 4,57	AuHf ₂ 9,41	MoSi ₂ ²⁶ , ³⁴ , 43, 44 3,23 11,61
Au ₆ Gd	${ m kompl.}^{38}$	${ m Au_6Tb}$	kompl. ³⁸	${\rm Au_6Dy}$	kompl. ³⁸		
\u₅Hf	${ m Ni}_4{ m Mo}^{46}$ 6,52	$Au_{8}Yb_{7}$ 4,02	$ m Th_7Fe_3{}^{41}$ 10,37	$\operatorname{Au_{10}Hf_7}_{6,51}$	tetr. r. z. ⁴³ 6,89	Au ₃ Yb ₅ 13,19	$B_3Cr_5 41$ 7,79 14,26
${ m Au_4Yb_5}$	Ge4Sm5 ⁴¹ 7,75 15,03	Au_7Ho_2 7,88	kompl. ⁴⁷				

Die Ag₂(SE)-Verbindungen kristallisieren im MoSi₂- bzw. im CeCu₂-Typ. Dabei ist zu bemerken, daß Ag₂Sm trotz sorgfältiger Untersuchungen röntgenographisch nicht gefunden werden konnte und daß frühere Angaben^{11, 18} in bezug auf die Struktur von Ag₂Yb widersprüchlich sind. In das Zustandsschaubild des Systems Ag—Yb wurde die Phase Ag₂Yb mit dem Strukturtyp CeCu₂ aufgenommen³³. Weiter ist zu beachten, daß zwischen Y und La ein Umschlag vom MoSi₂-Typ in den CeCu₂-Typ erfolgt und daß zwischen Eu und Gd das Umgekehrte zu beobachten ist. Die Phase Ag₂Hf wurde noch nicht näher untersucht.

Abb. 1. Mittleres Atomvolumen der Verbindungen Ag(SE), Au(SE) und Pt(SE), aufgetragen über der Ordnungszahl der SE

Die Ag₃(SE)-Verbindungen gehören fast durchweg zum Ag₃Pu-Typ. Die einzigen Ausnahmen bilden die Phasen Ag₃Eu (noch nicht identifiziert) und Ag₃Yb, das hexagonal primitiv kristallisiert. Ag₃Sc existiert nicht und Ag₃Lu sowie Ag₃Hf wurden noch nicht untersucht. In der Gruppe der Ag_x(SE)_y-Verbindungen wurde die Existenz der in Tab. 1 (unten) vermerkten Phasen sichergestellt.

Eine neuere Arbeit⁸⁰ deutet darauf hin, daß der Strukturtyp Ag₃Pu, dessen atomarer Aufbau nicht bekannt ist, mit dem Strukturtyp Ag₅₁Gd₁₄ identisch ist. Die Ergebnisse der Arbeit⁸⁰ wurden deshalb ebenfalls in Tab. 1 aufgeführt.

b) Au—SE-Verbindungen (Tab. 2)

Alle Au—SE-Verbindungen mit Ausnahme von AuEu sind untersucht. Sie kristallisieren im CsCl-Typ. Davon abweichend hat AuHf eine Struktur vom γ -TiCu-Typ und AgGd bzw. AgYb weisen zusätzlich noch eine Modifikation vom CrB- bzw. FeB-Typ auf. Bei AuCe ist die Struktur noch nicht völlig gesichert.

Die Au₂(SE)-Verbindungen kristallisieren im MoSi₂- bzw. im CeCu₂-Typ; für Au₂Pr, Au₂Nd und Au₂Sm sind die Strukturen noch nicht erarbeitet. Wie bei $Ag_2(SE)$ liegen die Übergangsgebiete vom MoSi₂- in den CeCu₂-Typ zwischen Y und La bzw. in umgekehrter Reihenfolge zwischen Eu und Gd.

Die Au₃(SE)-Verbindungen kristallisieren nicht nur, wie die Ag₃(SE)-Verbindungen, im Ag₃Pu-Typ, sondern teilweise auch im Cu₃Ti-Typ. Dabei liegen die Umschlagpunkte zwischen Y und La sowie zwischen Tb und Dy. Für Au₃Eu wurde ein tetragonal primitives Gitter gefunden³⁰.

Außerdem werden sieben Verbindungen mit der Zusammensetzung Au₇ $(SE)_2$ und mit komplizierter Struktur in der Literatur³⁸ angegeben. Nach einer neueren Untersuchung⁹ existiert jedoch Au₇Sc₂ nicht.

Eine weitere Gruppe von sechs Verbindungen der Form $\operatorname{Au}_4(SE)$ gehören zum MoNi₄-Typ. Die übrigen Beobachtungen bezüglich $\operatorname{Au}_x(SE)_y$ -Verbindungen sind in Tab. 2 (unten) aufgeführt.

c) Pd—SE-Verbindungen (Tab. 3)

Die stärkste Gruppe der in diesem Abschnitt zusammengestellten Verbindungen bezieht sich auf die Zusammensetzung $Pd_3(SE)$ vom Typ AuCu₃. Nur im Fall von Pd_3Tm muß die Struktur noch bestimmt werden. Pd_3Hf kristallisiert im TiNi₃-Typ.

Eine weitere Gruppe bilden fünf tetragonal raumzentrierte Phasen mit der Bruttoformel $Pd_2(SE)_5$. Die außerdem noch bekanntgewordenen $Pd_x(SE)_y$ -Phasen sind in Tab. 3 (unten) zusammengestellt.

Ferner sind in Tab. 3 für die Phasen Pd_3Ce und Pd_3Yb die Wärmeausdehnungskoeffizienten α in cm/°C angegeben.

d) Pt—SE-Verbindungen (Tab. 4)

Die Pt—SE-Verbindungen kristallisieren im wesentlichen im FeB-Typ, wobei vier Ausnahmen bekannt sind. Die Verbindungen PtEu und PtYb sind noch nicht untersucht.

Die $Pt_2(SE)$ -Verbindungen weisen den MgCu₂-Typ auf; es fehlen noch die Strukturbestimmungen von Pt_2Sc , Pt_2Lu und Pt_2Hf .

Bei den $Pt_3(SE)$ -Verbindungen überwiegen die Typen $AuCu_3(L1_2)$ und $MgCu_2(C15)$. Liegt der $MgCu_2$ -Typ vor, dann handelt es sich wahrscheinlich im Mittel um eine Substitution der Form $Pt_{16}Pt_2(SE)_6^{60}$ (Angabe pro Elementarzelle).

Für Phasen der Bruttoformel $Pt_5(SE)$ wird noch eine Gruppe von vier Verbindungen des Typs Cu₅Ca angegeben. Die in dieselbe Spalte der Tabelle eingetragenen "b"- und "c"-Typen müssen noch näher untersucht werden.

e) Über die Gesetzmäßigkeiten bei der Bildung verschiedener Strukturtypen

Wie aus den Tab. 1 bis 4 zu ersehen ist, wechseln innerhalb verschiedener Legierungsreihen die Strukturtypen, z. B. zwischen dem

SE	۲d(SE)	$\mathrm{Pd}_3(S)$	E)		SE	Pd(4	SE)	Pd_3	(SE)	
Sc	CsC 3,28	[8	AuCu ₃ 3,98	39		$^{\mathrm{Tb}}$			Au(4,07	Cu3 ⁴⁸ 7	
Y			AuCu ₃ 4,07	42		Dy		2 4	Au(4,06	Cu₃⁴8 3	
La			${ m AuCu_3} 4,23$	42, 48		Но			Au(4,08	Cu3 ⁴² 5	, 48
Ce	kom	pl. ⁴⁹	AuCu ₃ 4,12	48		\mathbf{Er}			Au(4,08	Cu3 ⁴² 5	, 48
			$\alpha = 13$ zw. 24 $\alpha = 20$ zw. 25	8,7 · 10 ⁻⁶ 4 u. 480° (0,7 · 10 ⁻⁶ u. 187° C) 50	Tm	CsCl 3,44	51			
Pr			AuCu ₃ 4,13	48		Yb			Au(4,03	Cu3 ⁴⁸ 3	
Nd			AuCu ₃ 4,12	42, 48					$\alpha = zw.$	= 12,' 25 t	7 · 10 ⁻⁶ 1. 460° C ⁵⁰
\mathbf{Sm}			AuCu ₃ 4,10	48		Lu	CsCl 3,42	51 	Au(4,0	Cu₃ ⁴² 3	, 48
Eu	Eu		AuCu ₃ ⁴⁸ 4,09			$\mathbf{H}\mathbf{f}$	kom	pl. 10	TiN 5,6(Ji3 ⁵²) 9,	19
$\begin{array}{rl} {\rm Gd} & {\rm CrB}^{76} \\ {\rm a} = & 3,76 \\ {\rm b} = & 10,55 \\ {\rm c} = & 4,55 \end{array}$		AuCu ₃ 4,08 $\alpha = 12$ zw. 25	42, 48 3,1 · 10−6 u. 390° C	50							
			We	itere Pd_x	$(SE)_y$ -	Verbin	ıdunş	gen			
PdS	c_2	NiTi2 ⁸ 12,43		$\mathrm{Pd}_{2}\mathrm{Gd}_{5}$	kompl	.3, 46]	Pd ₂ Tb	5 t 9	etrag ,6 i	. r. z. ^{3, 46} 13,58
Pd_2	Dy_5	tetrag. r 9,56 13	. z. ^{3, 46} 8,47	$\mathrm{Pd}_{2}\mathrm{Ho}_{5}$	tetrag 9,45	. r. z. ³ 13,43	, 46	Pd₃Ce	2 k	omp	1.53
Pd_2	Ce	kompl.5	3	$\mathrm{Pd}_{2}\mathrm{Ho}$	kompl	. 46	-	Pd₂Er	5 t 9	etrag ,49	. r. z. ⁵⁴ 13,43
Pd ₂	Lu	kompl.4	3	$PdHf_2$	${f NiTi_2}^3 12,36 \ {f MoSi_2} 3,25$	26 46, 55 11,06	ł				

Tabelle 3. Strukturtyp und Gitterkonstanten (in Å; Reihenfolge: a und c bzw. a, b und c) der Verbindungen vom Typ Pd(SE), $Pd_3(SE)$ und weiterer Verbindungen der Form $Pd_x(SE)_y$

MoSi₂- und CeCu₂-Typ bei den Ag₂(SE)- und Au₂(SE)-Phasen, zwischen dem Cu₃Ti- und Ag₃Pu-Typ bei den Au₃(SE)-Phasen und zwischen den "b"-, "e"- und Cu₅Ca-Typen bei den Pt₅(SE)-Phasen.

SE	$\operatorname{Pt}(SE)$	$\operatorname{Pt}_2(SE)$	$\operatorname{Pt}_3(SE)$	$\operatorname{Pt}_5(SE)$	
\mathbf{Sc}	CsCl ⁸ 3,27		AuCu3 ^{56, 57} 3,96		
Υ	FeB ⁴⁰ 7,01 4,47 5,55	MgCu2 ^{58, 59} 7,60	AuCu3 ³⁹ 4,08	,,c-Typ'' ⁵⁷ 5,24 9,12	26,53
La	CrB ⁴⁰ 3,97 11,04 4,56	MgCu ₂ ⁵⁸ 7,76	AuCu ₃ ¹¹ 4,07 MgCu ₂ ⁶⁰ 7,71	Cu ₅ Ca ²⁶ 5,39 4,38	
Се	CrB ⁴⁰ 3,92 10,92 4,52	MgCu ₂ ³⁹ 7,73	AuCu3 ¹¹ 4,16 MgCu2 ⁶⁰ 7,65	Cu ₅ Ca ²⁶ 5,37 4,39	
\mathbf{Pr}	FeB ⁴⁰ 7,29 4,56 5,70	MgCu ₂ ⁵⁸ 7,71	AuCu3 ¹¹ 4,07 MgCu2 ⁶⁰ 7,63	Cu ₅ Ca ²⁶ 5,35 4,39	
Nd	FeB ⁴⁰ 7,26 4,55 5,68	MgCu ₂ ⁵⁸ 7,69	AuCu3 ¹¹ 4,06 MgCu2 ⁶⁰ 7,61	Cu ₅ Ca ²⁶ 5,34 4,39	
\mathbf{Sm}	FeB ⁴⁰ 7,15 4,53 5,63	MgCu ₂ ⁴⁰ 7,66	AuCu ₃ ⁶⁰ 4,06	,,b-Typ'' ⁵⁷ 5,30 9,11	26,42
Eu		MgCu2 ⁶¹ 7,73	MgCu2 ⁶⁰ 7,71	,,b-Typ'' ⁵⁷ 5,30 9,10	26,36
Gd	${ m FeB^{40}} \\ 7,16 4,46 5,57$	MgCu2 ⁵⁸ 7,64	MgCu2 ⁶⁰ 7,56	"b-Typ" ⁵⁷ 5,29 9,07	26,43
\mathbf{Tb}	${ m FeB}^{ m 40} \ 7,02 \ \ 4,49 \ \ 5,56$	MgCu2 ^{40, 61} 7,62	AuCu ₃ ⁶⁰ 4,08	,,c-Typ'' ⁵⁷ 5,25 9,09	26,44
Dy	FeB ^{26, 40} 7,12 4,45 5,40	MgCu2 ⁶¹ 7,60	AuCu ₃ ⁶⁰ 4,06	"c-Typ" ⁵⁷ 5,24 9,09	26.47
Ho	${ m FeB^{40}} \ 6,95 \ 4,47 \ 5,53$	MgCu ₂ ⁶¹ 7,59	AuCu ₃ ^{32, 57} 4,06	,,c-Typ'' ⁵⁷ 5,23 9,09	26,49
Er	FeB ⁴⁰ 6,90 4,45 5,51	MgCu2 ⁶¹ 7,57	AuCu ₃ ^{32, 57} 4,05	".e-Typ" ⁵⁷ 5,23 9,08	26,51
Tm	${ m FeB^{40}} \\ 6,86 4,45 5,50$	MgCu2 ¹¹ 7,56	AuCu3 ^{11, 57} 4,04	,,c-Typ'' ⁵⁷ 5,21 9,07	26,49
Yb		MgCu2 ¹¹ 7,38	AuCu3 ^{57, 60} 4,03	·	·

Tabelle 4. Strukturtyp und Gitterkonstanten (in Å; Reihenfolge: a und c bzw. a, b und c) der Verbindungen vom Typ Pt(SE), Pt₂(SE), Pt₃(SE), Pt₅(SE) und weiterer Verbindungen der Form Pt_x(SE)_y

SE	$\operatorname{Pt}(SE)$		$\operatorname{Pt}_2(SE)$	$\operatorname{Pt}_3(SE)$	$\operatorname{Pt}_5(SE)$
Lu	${f FeB^{40}}\ 6,81 \ 4,42$	5,48	kompl. ^{46, 61}	AuCu3 ⁵⁷ 4,03	
Ħf	$CsCl^{46}$ 3,23 $CrB^{40, 62}$ 3,35 10,2 ⁴	7 4,29		TiNi ₃ ²⁶ 5,64 9,21	
		We	itere $\operatorname{Pt}_x(SE)_y$	-Verbindunger	1
Pt ₃ G	d_2 komp	ol. ²⁶	Pt_3Hf_2 N	$MoSi_2^{62}$]	PtHf ₂ NiTi ₂ ²⁶ 12.46

Fortsetzung (Tabelle 4)

Auch unter Berücksichtigung verschiedenster Regeln (z. B. Ionenradienverhältnisse, Elektronegativitäten usw.) ist auf Grund der in den Tabellen festgehaltenen Vielfalt von Strukturtypen eine einigermaßen zuverlässige Vorhersage derselben noch nicht möglich. Andererseits wurde von Sawitzki⁶³ eine Vorausberechnung der zu erwartenden Ag₃(SE)- und Pd₃(SE)-Phasen durchgeführt. Die Vorhersage beruhte auf der Kenntnis der Phasen Ag₃Ce, Ag₃Pr und Ag₃La, die in Tab. 5 mit zwei Kreuzen (++) gekennzeichnet sind. Sawitzki konnte die mit einem Kreuz (+) gekennzeichneten Phasen, deren Existenz von ihm vorausgesagt worden war, nach Literaturangaben bestätigt finden. Die experimentelle Bestätigung der mit \bigcirc gekennzeichneten Vorhersagen desselben Autors findet sich in den Tab. 1 bis 4 der vorliegenden Arbeit. Die von Sawitzki⁶³ gemachten Voraussagen treffen also weitgehend zu.

Tabelle 5. Von $E. M. Sawitzki^{*3}$ vorhergesagte Verbindungen der Reihen $Ag_3(SE)$ und $Pd_3(SE)$

	Ce	\mathbf{Pr}	Nd	\mathbf{Sm}	Eu	Dy	Ho	\mathbf{Er}	Tm	Yb	La
$Ag_3(SE)$ Pds(SE)	++	++	+	0	+	+	0	0	0	0	++
++	= zur	$\overline{\mathbf{Berechn}}$	ung b	enütz	t.			Τ,	1	+	т ,

+ =vorhergesagt und durch nachfolgende Literaturangaben bestätigt.

 \bigcirc = vorhergesagt und durch vorliegende Zusammenstellung bestätigt.

Auf die Bedeutung der Wertigkeit des *SE*-Metalles für die Phasenbildung wird von *Palenzona*⁶⁴ hingewiesen. Demnach ist z. B. Yb in den meisten intermetallischen Verbindungen zweiwertig, in den Au-Verbindungen jedoch dreiwertig.

Schließlich sei noch darauf hingewiesen, daß auch für die Verbindungen Ni₃(SE) und Ni₇(SE)₂ eine entsprechende, ausführliche Zusammenstellung vorliegt⁶⁵.

Konstitution, Löslichkeit und Eigenschaftsänderungen

Für die nachfolgenden Ausführungen wurden die bekannten Sammelwerke über den Aufbau von Zweistoffsystemen^{26, 46, 66} sowie die spezielle Sammlung der Zweistoffsysteme mit SE-Metallen⁵⁹ benützt.

Wie die vorausgegangenen Darstellungen gezeigt haben, sind die Strukturen in den einzelnen hier erörterten Systemen weitgehend bekannt. Demgegenüber sind die Zustandsschaubilder bisher weniger gut untersucht. Eingehende Bearbeitungen liegen nur für folgende Systeme vor: Ag-Y⁶⁷, Ag-La⁶⁶, Ag-Ce⁶⁶, Ag-Pr⁶⁶, Ag-Sm⁶⁷, Ag-Eu⁶⁸, Ag-Gd⁶⁹, Ag-Ho³¹, Ag-Er⁷⁰, Ag-Yb⁶⁴, Au-La⁶⁶, Au-Ce⁶⁶, Au-Pr⁶⁶, Au-Yb⁴¹ und Pd-Ce (für 50 bis 100 % Pd)⁷¹. Demnach sind also die Ag-SE-Systeme weitgehend untersucht, während die Systeme der Seltenen Erdmetalle mit Au nur teilweise und diejenigen mit Pd und Pt kaum bearbeitet worden sind.

Obwohl die Löslichkeitsverhältnisse in vielerlei Hinsicht von hohem Interesse sind, liegen auch hierüber nur wenige exakte Angaben vor. Grundsätzlich ist festzustellen, daß Ag und Au meist nur wenig SE-Metall in fester Lösung aufzunehmen vermögen, und daß das SE-Metall praktisch überhaupt keine nennenswerte Löslichkeit für Ag und Au besitzt. Einige Literaturwerte sind in Tab. 6 zusammengestellt. Demnach hat Pd eine sehr große Löslichkeit für Ce, die oberhalb von 800 °C etwa 13 At% beträgt⁴⁹.

Im Hinblick auf die Möglichkeiten, durch Mischkristallbildung bzw. durch Ausscheidungsvorgänge die Eigenschaften der betreffenden Metalle und Legierungen zu beeinflussen, erscheint eine weitergehende Untersuchung der Löslichkeitsverhältnisse in SE-Metall-Systemen sehr wünschenswert. In manchen Systemen liegen bereits einige interessante Beobachtungen dieser Art vor. So wird z. B. mitgeteilt³⁷, daß die Ho-Atome in Cu, Ag und Au zu magnetischer Elektronenstreuung Anlaß geben und die elektrischen und thermodynamischen Eigenschaften des Grundmetalls beträchtlich verändern. Ferner ist bekannt, daß viele SE-Metalle bestimmten Matrixmetallen gegenüber stark desoxidierend wirken und damit zu Eigenschaftsänderungen führen, hauptsächlich im Hinblick auf die elektrische und thermische Leitfähigkeit. Als Beispiel für die desoxidierende Wirkung sei angeführt, daß durch geringe Ho-Zusätze der O-Gehalt von Cu von 220 ppm auf 40 ppm erniedrigt werden kann³⁷.

In einer kürzlich erschienenen Arbeit⁷² wurde die innere Oxidation von Ag-Legierungen mit geringen Gehalten an Ho, Er, Y und Gd untersucht. Für die Abhängigkeit der Breite der inneren Oxidationszone S von der Glühzeit t wurde das für einen diffusionsbestimmten Vorgang zu erwartende parabolische Gesetz $S^2 = k_s \cdot t$ gefunden. Die Sauerstoff-

Gelöstes Element	Matrix	Löslichkeit in At%	Temperatur in °C	Literatur
Y	Ag	< 1	775	67
\mathbf{Sm}	Ag	< 0,72	775	67
\mathbf{Gd}	$\widetilde{\operatorname{Ag}}$	< 2	750	69
\mathbf{Ho}	$\mathbf{A}\mathbf{g}$	1,6	787	31, 37
\mathbf{Er}	Ag	5	772	70
$\mathbf{Y}\mathbf{b}$	Ag	2		64
\mathbf{Sc}	Au	6,3	780	46
\mathbf{La}	${ m Au}$	< 0,2	780	46
\mathbf{Pr}	$\mathbf{A}\mathbf{u}$	0,5		71
Au	\mathbf{Pr}	< 0.25		71
\mathbf{Nd}	Au	< 0,2	780	46
\mathbf{Sm}	Au	< 0,3	780	46
\mathbf{Gd}	\mathbf{Au}	0,6	780	46
Tb	Au	1	780	46
$\mathbf{D}\mathbf{y}$	Au	2,1	780	46
$\check{\mathbf{Ho}}$	Au	3,8	778	37
Tm	Au	6	780	46
Lu	Au	6,5	780	46
\mathbf{La}	\mathbf{Pd}	≪ 1	900	77
Ce	\mathbf{Pd}	13	800 - 1050	49, 77
\mathbf{Pr}	\mathbf{Pd}	0,9	900	77
Y	\mathbf{Pd}	12,2	900	77
		12,0	500	77
Gd	\mathbf{Pd}	11,3	900	78
Sc	\mathbf{Pd}	17,5	900	78
$\mathbf{Y}\mathbf{b}$	\mathbf{Pd}	16,5	900	79
\mathbf{Pd}	Gd, Dy,	< 1	< 1000	54
	Ho, Er			

Tabelle 6. Löslichkeit von Seltenen Erdmetallen in einigen Edelmetallen

druckabhängigkeit der Breite der innen-oxidierten Schicht gehorcht der Beziehung $S^2 = \text{const} \cdot \sqrt[7]{p_{02}}$ ($p_{02} = \text{Sauerstoffdruck}$). Damit ist die Gültigkeit der Annahme von *Rhines*⁸¹ und *Wagner*⁸² auch für dieses System bestätigt, wonach das Quadrat der Zonenbreite bei konstanter Temperatur direkt proportional der Sauerstofflöslichkeit $N_0^{(s)}$ ist, da für $N_0^{(s)}$ das *Sievert*sche Wurzelgesetz $N_0^{(s)} = \text{const.} \sqrt[7]{p_{02}}$ gilt. Aus der gemessenen Temperaturabhängigkeit des Zonenwachstums ergab sich eine Energiegröße von 25,9 kcal/($\frac{1}{2}$ Mol O₂) für den Vorgang der inneren Oxidation. Dieser Energiebetrag liegt um 3 ± 0.5 kcal über einem nach der Theorie von *Rhines* und *Wagner* berechneten Wert, der aus der Summe der in der Literatur⁷² vorliegenden Aktivierungsenergie der Diffusion und der Lösungsenthalpie von Sauerstoff in Reinsilber gebildet wurde. Durch die in der Ag-Matrix in feinster Form sich ausscheidenden Oxide der SE findet eine ausgeprägte Dispersionshärtung statt. Dabei steigt die Härte der entsprechenden Proben von etwa 30 auf 70 bis 80 kp/mm² an. Wird zusätzlich noch um 50% kaltverformt, dann ist ein weiterer Härteanstieg auf etwa 120 bis 130 kp/mm² zu verzeichnen. Von besonderem Interesse ist die Feststellung, daß bei dispersionsgehärteten

Abb. 2. Abhängigkeit der Härte von der Glühtemperatur für 50% kaltverformte, innen-durchoxidierte Silbermischkristalle mit Zusatz von Seltenen Erdmetallen. Die Proben wurden bei 750 °C und einem Sauerstoffpartialdruck von 160 Torr innen durchoxidiert

Abb. 3. Mittlere Atomvolumina im System Ag-Dy

und zusätzlich kaltverformten Proben die Rekristallisation erst oberhalb von 850 °C eintritt. Dagegen rekristallisiert reines Silber unter vergleichbaren Bedingungen bereits bei etwa 200 °C. Ausschlaggebend für die starke Erhöhung der Rekristallisationstemperatur der Silbermatrix ist die thermische Stabilität der die Kornneubildung hemmenden Oxiddispersionen.

Die geschilderten Verhältnisse sind in Abb. 2 veranschaulicht, die sich auf Legierungen von Ag mit Y, Ho und Er bezieht.

Mittlere Atomvolumina

Zunächst wird in Abb. 3 das mittlere Atomvolumen der Verbindungen AgDy, Ag₂Dy und Ag₃Dy als Funktion der Dy-Konzentration gezeigt. Nach K. Schubert und H. Nowotny⁷⁸ ist ein stetiger Verlauf der Verbindungslinie dieser Punkte zu erwarten. Somit kann diese Auftragung

Monatshefte für Chemie, Bd. 103/3

als eine Kontrolle bei der Strukturbestimmung bzw. bei der Indizierung benützt werden.

Abb. 4. Mittleres Atomvolumen der Verbindungen $Ag_2(SE)$, $Au_2(SE)$ und $Pt_2(SE)$, aufgetragen über der Ordnungszahl der SE

Abb. 5a u. b. Mittleres Atomvolumen der Verbindungen $Ag_3(SE)$, $Au_3(SE)$, $Pt_3(SE)$, $Pd_3(SE)$ und $Pt_5(SE)^{57}$, aufgetragen über der Ordnungszahl der SE

In den Abb. 1, 4, 5a und 5b sind die mittleren Atomvolumina der Verbindungen vom Typ M(SE), $M_2(SE)$, $M_3(SE)$ und $Pt_5(SE)$ über der Ordnungszahl der SE-Metalle aufgetragen, wobei die in den Tab. 1 bis 4 zusammengestellten Werte der Gitterkonstanten Verwendung fanden. Außerdem wurden in Abb. 6 die Atomvolumina der SE-Metalle über ihrer Ordnungszahl aufgetragen, und in Tab. 7 sind die Atomvolumina der Legierungspartner Ag, Au, Pd und Pt zusammengestellt. In Abb. 1, welche die mittleren Atomvolumina der Phasen Ag(SE), Au(SE) und Pt(SE) enthält, liegt im wesentlichen ein stetiger Kurvenverlauf vor. Lediglich bei AgYb und AuYb treten starke Abweichungen

Abb. 6. Atomvolumen der Seltenen Erdmetalle, aufgetragen über deren Ordnungszahl

Metall	Ag	Au	Pd	\mathbf{Pt}
Gitterkonstante in Å	4,09	4,08	3,89	3,92
Atomvolumen in Å ³ /Atom	17,1	17,0	14,7	15,1

Tabelle 7. Gitterkonstanten⁷⁵ und Atomvolumina von Ag, Au, Pd und Pt

auf. Diese können mit dem aus Abb. 6 ersichtlichen großen Atomvolumen von Yb in Zusammenhang gebracht werden. Ähnliche Abweichungen sind nach Abb. 6 auch bei den jeweiligen Verbindungen von Eu zu erwarten. Leider liegen aber die strukturellen Daten für AgEu, AuEu und PtEu noch nicht vor; die Kurven sind deshalb an den entsprechenden Stellen unterbrochen worden. Da die Elemente Ag und Au gleiche Atomvolumina haben (Tab. 7), kann aus Abb. 1 gefolgert werden, daß wahrscheinlich in den Phasen Au(SE) stärkere Bindungskräfte wirksam sind als in den Phasen Ag(SE). Darauf wurde an Hand einer ähnlichen Darstellung auch schon in einer früheren Arbeit²⁴ hingewiesen. Die Kurve für die Pt(SE)-Phasen liegt deutlich unterhalb der beiden Kurven für Ag(SE) und Au(SE). Weil aber Pt mit etwa 15 Å³/Atom ein etwas kleineres Atomvolumen als Ag und Au (17 Å³/Atom) hat, kann aus Abb. 1 nicht ohne weiteres geschlossen werden, daß auch in den Verbindungen der Reihe Pt(SE) stärkere Bindungstendenzen vorliegen als in den Reihen Ag(SE) und Au(SE).

In Abb. 4 sind die mittleren Atomvolumina der Reihen $Ag_2(SE)$, Au₂(SE) und Pt₂(SE) eingetragen, wobei in diesem Fall die letztgenannte Reihe sehr deutlich unterhalb der beiden erstgenannten liegt. In allen drei Fällen treten die nach Abb. 6 zu erwartenden, nach oben gerichteten Abweichungen bei Eu auf. Dagegen werden entsprechende Abweichungen bei Yb, die nach Abb. 6 ebenfalls zu erwarten wären, nur bei Ag₂Yb beobachtet. In der Pt₂(SE)-Reihe zeigt sich bei Yb eine nach unten gerichtete Abweichung. Vor weiteren Erörterungen über die zuletzt genannte Unregelmäßigkeit sollten jedoch die bisher vorliegenden Strukturdaten der Phase Pt₂Yb nochmals überprüft werden; ebenso erscheint eine Klärung der Verhältnisse bei Ag₂Yb erforderlich, wo bis jetzt zwei Strukturvorschläge vorliegen.

Schließlich sind in Abb. 5a die Ergebnisse für die Reihen Ag₃(SE), Au₃(SE), Pt₃(SE) und Pd₃(SE) dargestellt. Die Differenzierung der Kurven für Au₃(SE) und Ag₃(SE) ist nicht mehr so deutlich wie in den M(SE)- und $M_2(SE)$ -Reihen (Abb. 1 und 4); die Kurven für Pt₃(SE) und Pd₃(SE) liegen jedoch deutlich tiefer als die für Au₃(SE) und Ag₃(SE). Bei Au₃Eu, Pt₃Eu und Ag₃Yb treten wieder die erwarteten Abweichungen auf. Für die Pt₃(SE)-Reihe liegen zwischen La und Gd jeweils zwei Modifikationen vor, deren Atomvolumina beide in Abb. 5a eingezeichnet sind.

Die $Pd_3(SE)$ -Reihe hat einen stetigen, fast linearen Verlauf ohne Abweichungen, ebenso wie die in Abb. 5b gezeigte Reihe für $Pt_5(SE)$.

Literatur

¹ J. F. Collins, V. P. Calkins und J. A. McGurty, AECU-4424 (Dez. 1959).

² H. Fahlenbroch, Industrie-Elektronik 1970, 672.

³ A. E. Berkowitz, F. Holtzberg und S. Methfessel, J. Appl. Phys. 35, 1030 (1964).

⁴ M. Atoji, J. Chem. Physics 51, 3882 (1969).

⁵ M. Atoji, J. Chem. Physics 48, 3380 (1968).

⁶ M. Atoji, J. Chem. Physics **51**, 3877 (1969).

⁷ M. Atoji, J. Chem. Physics 48, 560 (1968).

Über die intermetallischen Verbindungen der Seltenen Erdmetalle 733

⁸ A. T. Aldred, Trans. Soc. AIME 224, 1082 (1962).

⁹ H. Reule, S. Steeb und C. Donolato, J. Less Common Metals 24, 108 (1971).

¹⁰ A. Dwight, Trans. AIME **215**, 283 (1959).

¹¹ J. L. Moriarty, J. E. Humphreys, R. O. Gordon und N. C. Baenziger, Acta cryst. 21, 840 (1966).

S. Steeb, D. Godel und C. Löhr, J. Less Common Metals 15, 137 (1968).
 A. E. Dwight, Rept. ANL 7000.

¹⁴ J. B. Kusma und E. Laube, Mh. Chem. 96, 1496 (1965).

¹⁵ H. Bommer und E. Krose, Z. anorg. Chem. 252, 62 (1943).

¹⁶ M. Hansen und K. Anderko, Aufbau der Zweistofflegierungen. Berlin: Springer. 1936.

¹⁷ R. Vogel und H. Klose, Z. Metallkde. 45, 633 (1954).

¹⁸ A. Iandelli und A. Palenzona, J. Less Common Metals 15, 273 (1968).

¹⁹ I. Rolla, A. Iandelli, G. Canneri und R. Vogel, Z. Metallkde. 35, 29 (1943).

²⁰ A. Iandelli, Atti X° Congr. Int. Chim. 2, 688 (1938).

²¹ C. Donolato und S. Steeb, J. Less Common Metals 18, 312 (1969).

²² R. Ferro, Gazz. Chim. Ital. 85, 888 (1955).

²³ S. Steeb und D. Godel, Z. Metallkde. 56, 614 (1965).

²⁴ C. C. Chao, H. L. Luo und P. Duwez, J. Appl. Phys. 34, 1971 (1963).

²⁵ W. Köster und J. Meixner, Z. Metallkde. 56, 695 (1965).

²⁶ R. P. Elliott, Constitution of Binary Alloys. New York: McGraw-Hill. 1965.

²⁷ N. C. Baenziger und J. L. Moriarty, Jr., Acta Cryst. 14, 948 (1961).

²⁸ A. E. Dwight, J. W. Downey und R. A. Conner, Acta Cryst. **22**, 745 (1967).

²⁹ R. Ferro, R. Capelli, A. Borxx und S. Delgino, Rend. Accad. Lincei 42, 60 (1967).

³⁰ C. Donolato und S. Steeb, J. Less Common Metals 18, 442 (1969).

³¹ E. Gebhardt und M. v. Erdberg, J. Less Common Metals **11**, 141 (1966).

³² J. L. Moriarty, R. O. Gordon und J. E. Humphreys, Acta Cryst. **19**, 285 (1965).

³³ A. Palenzona, J. Less Common Metals **21**, 443 (1970).

³⁴ M. V. Nevitt, Proc. Conf. Electronic Structure and Alloy Chem. of Transit. Elements, AIME (1962).

³⁵ A. Raman und K. Schubert, Z. Metallkde. 55, 798 (1964).

³⁶ K. Schubert, H. G. Meissner, A. Raman und W. Rossteutscher, Naturwiss. **51**, 287 (1964).

³⁷ W. J. Wunderlin, B. J. Beaudry und A. H. Daane, Trans. Soc. AIME **227**, 1302 (1963).

³⁸ V. Sadagopan, B. C. Giessen und N. J. Grant, J. Less Common Metals 14, 279 (1968).

²⁹ O. D. McMasters und K. A. Gschneidner, Jr., Rare Earth Intermetallic Compounds (Nuclear Metallurgy Series, Vol. X), S. 93 (1964).

⁴⁰ A. E. Dwight, US At. Energy Comm. ANL-6868, 1963, 303.

⁴¹ A. Iandelli und A. Palenzona, J. Less Common Metals 18, 221 (1969).

⁴² A. E. Dwight, US At. Energy Comm. ANL-6330, 1960, 154.

⁴³ E. Stolz und K. Schubert, Z. Metallkde. 53, 433 (1962).

⁴⁴ K. Schubert, H. G. Meissner, M. Pötzschke, W. Rossteutscher und E. Stolz, Naturwiss. **49**, 57 (1962).

⁴⁵ K. Schubert, T. R. Anantharaman, H. O. K. Ata, H. G. Meissner, M. Pötzschke, W. Rossteutscher und E. Stolz, Naturwiss. **47**, 512 (1960).

⁴⁶ F. A. Shunk, Constitution of Binary Alloys. New York: McGraw-Hill. 1969.

⁴⁷ Report IS-700 (Sect. C), 1963; Chem. Division, Ames Lab., Ames, Jowa.

⁴⁸ J. R. Harris und G. V. Raynor, J. Less Common Metals 9, 263 (1965).
 ⁴⁹ J. R. Thomson, J. Less Common Metals 13, 307 (1967).

⁵⁰ J. R. Harris, G. V. Raynor und C. J. Winstonley, J. Less Common Metals **12**, 69 (1967).

⁵¹ A. E. Dwight und J. B. Darby, US At. Energy Comm. ANL-6677, **1962**, 258.

⁵² A. E. Dwight und P. A. Beck, Trans. AIME 215, 976 (1959).

⁵³ L. J. Wittenberg und G. R. Grove, US At. Energy Comm. MLM-1244, **1964**, 20.

⁵⁴ O. Loebich, Jr., und E. Raub, Naturwiss. 56, 278 (1969).

⁵⁵ M. V. Nevitt und J. W. Downey, Trans. AIME 224, 195 (1962).

⁵⁶ W. Bronger und W. Klemm, Z. Anorg. Allg. Chem. **319**, 58 (1962).

⁵⁷ W. Bronger, J. Less Common Metals **12**, 63 (1967).

⁵⁸ V. B. Compton und B. T. Matthias, Acta Cryst. 12, 651 (1959).

⁵⁹ C. E. Lundin, in: The Rare Earths, S. 224 (F. H. Spedding und

A. H. Daane, Hrsg.). New York-London: J. Wiley, Inc. 1961.

⁶⁰ J. R. Harris, J. Less Common Metals 14, 462 (1968).

⁶¹ R. P. Elliott, in: Rare Earth Research III (Proc. of the 4th Conf. 1964),

S. 215. (L. Eyring, Hrsg.,). New York: Gordon and Breach. 1965.
 ⁶² A. Raman und K. Schubert, Z. Metallkde. 55, 704 (1964).

⁶³ E. M. Sawitzki, Y. W. Dewingtal und W. B. Gribulia, Dokl. Akad. Nauk SSSR, Chimia 183, 1110 (1968).

⁶⁴ A. Palenzona, J. Less Common Metals 21, 443 (1970).

⁶⁵ A. V. Virkar und A. Raman, J. Less Common Metals 18, 59 (1969).

⁶⁶ M. Hansen und K. Anderko, Constitution of Binary Alloys. New York: McGraw-Hill. 1957.

⁶⁷ E. Gebhardt, M. v. Erdberg und U. Lüty, Internat. Symp. Reactor Technology, Univ. of Colorado **1964**, 303.

⁶⁸ W. Köster und J. Meixner, Z. Metallkde. 56, 695 (1965).

⁶⁹ G. Kiessler, E. Gebhardt und S. Steeb, J. Less Common Metals 26, 293 (1972).

⁷⁰ E. Gebhardt, J. Elssner und J. Höhler, J. Less Common Metals **19**, 329 (1969).

⁷¹ K. A. Gschneidner, Jr., Rare Earth Alloys. New York: van Nostrand. 1961.

⁷² G. Elssner und E. Gebhardt, Z. Metallkde. 60, 922 (1969).

⁷³ K. Schubert, Kristallstrukturen zweikomponentiger Phasen. Berlin-Göttingen-Heidelberg: Springer. 1964.

⁷⁴ P. J. Kripyahevich, E. J. Gladyshevskji, O. S. Zarechnyuk, V. I. Evdokimenko, J. J. Zalutskji und D. P. Frankevich, Kristallografiya 8, 595 (1963).

⁷⁵ W. B. Pearson, Lattice Spacings and Structures of Metals and Alloys, Bd. 2. London-New York: Pergamon. 1967.

⁷⁶ J. Pierre und E. Siaud, C. r. hebdomad. Sé. Acad. Sci. B 266, 1483 (1969).

⁷⁷ I. R. Harris und H. Norman, J. Less Common Met. 15, 285 (1968).

⁷⁸ H. Norman und I. R. Harris, J. Less Common Met. 18, 333 (1969).

Über die intermetallischen Verbindungen der Seltenen Erdmetalle 735

⁷⁹ J. D. Speight, I. R. Haris und G. V. Raynor, J. Less Common Met. **16**, 164 (1968).

⁸⁰ O. D. Masters, K. A. Geschneidner, Jr., und R. F. Venteicher, Acta Cryst. B 26, 1224 (1970).

⁸¹ F. N. Rhines, W. A. Johnson und W. A. Anderson, Trans. AIME 147, 205 (1942).

⁸² C. Wagner, Z. Elektrochem. 63, 772 (1959).